Poisson suspensions and entropy for infinite transformations
نویسندگان
چکیده
منابع مشابه
Entropy of infinite systems and transformations
The Kolmogorov-Sinai entropy is a far reaching dynamical generalization of Shannon entropy of information systems. This entropy works perfectly for probability measure preserving (p.m.p.) transformations. However, it is not useful when there is no finite invariant measure. There are certain successful extensions of the notion of entropy to infinite measure spaces, or transformations with ...
متن کاملPoisson suspensions and infinite ergodic theory
We investigate ergodic theory of Poisson suspensions. In the process, we establish close connections between finite and infinite measure preserving ergodic theory. Poisson suspensions thus provide a new approach to infinite measure ergodic theory. Fields investigated here are mixing properties, spectral theory, joinings. We also compare Poisson suspensions to the apparently similar looking Gaus...
متن کاملPredictability, Entropy and Information of Infinite Transformations
We show that a certain type of conservative, ergodic, measure preserving transformation always has a maximal zero entropy factor, generated by predictable sets. We also consider distribution asymptotics of information; e.g. for Boole’s transformation, information is asymptotically mod-normal, a property shared by certain ergodic, probability preserving transformations with zero entropy. §0 Intr...
متن کاملJa n 20 08 POISSON SUSPENSIONS AND INFINITE ERGODIC THEORY
We investigate ergodic theory of Poisson suspensions. In the process, we establish close connections between finite and infinite measure preserving ergodic theory. Poisson suspensions thus provide a new approach to infinite measure preserving ergodic theory. Fields investigated here are mixing properties, spectral theory, joinings. We also compare Poisson suspensions to the apparently similar l...
متن کاملA Characterization of the Entropy--Gibbs Transformations
Let h be a finite dimensional complex Hilbert space, b(h)+ be the set of all positive semi-definite operators on h and Phi is a (not necessarily linear) unital map of B(H) + preserving the Entropy-Gibbs transformation. Then there exists either a unitary or an anti-unitary operator U on H such that Phi(A) = UAU* for any B(H) +. Thermodynamics, a branch of physics that is concerned with the study...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 2009
ISSN: 0002-9947
DOI: 10.1090/s0002-9947-09-04968-x